GNS3 CCNP Lab 1.2: TSHOOT Routing: Answers

GNS3 CCNP Lab 1.2: TSHOOT Routing: Answers

GNS3 Portable Project File: https://bit.ly/2rQPznd

This is one of multiple Cisco CCNP GNS3 Labs. Are you ready to pass your CCNP exam?

For lots more content, visit http://www.davidbombal.com – learn about GNS3, CCNA, Packet Tracer, Python, Ansible and much, much more.

300-101 ROUTE Exam information: https://bit.ly/2GkcFXQ
300-115 SWITCH Exam information: https://bit.ly/2KrSWIe
300-135 TSHOOT Exam information: https://bit.ly/2IlHpgY

Training: http://www.davidbombal.com

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. Partial functionality of EIGRP was converted to an open standard in 2013[1] and was published with informational status as RFC 7868 in 2016.

EIGRP is used on a router to share routes with other routers within the same autonomous system. Unlike other well known routing protocols, such as RIP, EIGRP only sends incremental updates, reducing the workload on the router and the amount of data that needs to be transmitted.

EIGRP replaced the Interior Gateway Routing Protocol (IGRP) in 1993. One of the major reasons for this was the change to classless IPv4 addresses in the Internet Protocol, which IGRP could not support.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC 2328 (1998) for IPv4.[1] The updates for IPv6 are specified as OSPF Version 3 in RFC 5340 (2008).[2] OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.

OSPF is a widely used IGP in large enterprise networks. IS-IS, another LSR-based protocol, is more common in large service provider networks.

subscribe